Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Here we provide percent contribution of mineral associated (i.e., heavy fraction - HF) and relatively more labile (i.e., light fraction - LF) organic matter through soil profiles and along hillslope catena within sites in the Critical Zone Network (CZNet) Geomicrobiology cluster. Each sample is separated into a HF an a LF utilizing a 1.85 g cm-3 sodium polytungstate (3Na2WO4·9WO3·H2O or Na6 [H2W12O40]) solution. The resultant fractions are run for percent carbon (C) and nitrogen (N) and their associated stable isotopes (δ13C and δ15N) to offer novel insights in soil organic matter processes. Samples that were either too small for analytical analysis or below instrument detection limit are labeled with BDL.more » « less
-
Abstract Increasing fine root carbon (FRC) inputs into soils has been proposed as a solution to increasing soil organic carbon (SOC). However, FRC inputs can also enhance SOC loss through priming. Here, we tested the broad-scale relationships between SOC and FRC at 43 sites across the US National Ecological Observatory Network. We found that SOC and FRC stocks were positively related with an across-ecosystem slope of 7 ± 3 kg SOC m−2per kg FRC m−2, but this relationship was driven by grasslands. Grasslands had double the across-ecosystem slope while forest FRC and SOC were unrelated. Furthermore, deep grassland soils primarily showed net SOC accrual relative to FRC input. Conversely, forests had high variability in whether FRC inputs were related to net SOC priming or accrual. We conclude that while FRC increases could lead to increased SOC in grasslands, especially at depth, the FRC-SOC relationship remains difficult to characterize in forests.more » « lessFree, publicly-accessible full text available December 1, 2026
-
This data is an on-going collection of soil temperature, soil moisture, soil CO2 concentration, and soil O2 concentration starting in October 2021. We have installed sensors and probes at different soil depths across landscapes in five of the former Critical Zone Observatory locations (see the document named "sensor location"). Soil temperature and moisture are measured using Acclima SDI-12 sensors. Soil CO2 concentrations are measured using Eosense CO2 probes (switching to Vaisala GMP343 and GMP251 in 2023). Soil O2 concentrations are measured using Apogee SO-110-L-10 soil oxygen sensors. This dataset, along with our measurements of soil geomicrobiology and biogeochemistry (available in EarthChem), will help us understand the role of microbes as drivers of Critical Zone biogeochemistry and soil formation.more » « lessFree, publicly-accessible full text available December 1, 2025
-
ABSTRACT Litter decomposition is an important ecosystem process and global carbon flux that has been shown to be controlled by climate, litter quality, and microbial communities. Process‐based ecosystem models are used to predict responses of litter decomposition to climate change. While these models represent climate and litter quality effects on litter decomposition, they have yet to integrate empirical microbial community data into their parameterizations for predicting litter decomposition. To fill this gap, our research used a comprehensive leaf litterbag decomposition experiment at 10 temperate forest U.S. National Ecological Observatory Network (NEON) sites to calibrate (7 sites) and validate (3 sites) the MIcrobial‐MIneral Carbon Stabilization (MIMICS) model. MIMICS was calibrated to empirical decomposition rates and to their empirical drivers, including the microbial community (represented as the copiotroph‐to‐oligotroph ratio). We calibrate to empirical drivers, rather than solely rates or pool sizes, to improve the underlying drivers of modeled leaf litter decomposition. We then validated the calibrated model and evaluated the effects of calibration under climate change using the SSP 3–7.0 climate change scenario. We find that incorporating empirical drivers of litter decomposition provides similar, and sometimes better (in terms of goodness‐of‐fit metrics), predictions of leaf litter decomposition but with different underlying ecological dynamics. For some sites, calibration also increased climate change‐induced leaf litter mass loss by up to 5%, with implications for carbon cycle‐climate feedbacks. Our work also provides an example for integrating data on the relative abundance of bacterial functional groups into an ecosystem model using a novel calibration method to bridge empiricism and process‐based modeling, answering a call for the use of empirical microbial community data in process‐based ecosystem models. We highlight that incorporating mechanistic information into models, as done in this study, is important for improving confidence in model projections of ecological processes like litter decomposition under climate change.more » « less
-
Abstract From hillslope to small catchment scales (< 50 km 2 ), soil carbon management and mitigation policies rely on estimates and projections of soil organic carbon (SOC) stocks. Here we apply a process-based modeling approach that parameterizes the MIcrobial-MIneral Carbon Stabilization (MIMICS) model with SOC measurements and remotely sensed environmental data from the Reynolds Creek Experimental Watershed in SW Idaho, USA. Calibrating model parameters reduced error between simulated and observed SOC stocks by 25%, relative to the initial parameter estimates and better captured local gradients in climate and productivity. The calibrated parameter ensemble was used to produce spatially continuous, high-resolution (10 m 2 ) estimates of stocks and associated uncertainties of litter, microbial biomass, particulate, and protected SOC pools across the complex landscape. Subsequent projections of SOC response to idealized environmental disturbances illustrate the spatial complexity of potential SOC vulnerabilities across the watershed. Parametric uncertainty generated physicochemically protected soil C stocks that varied by a mean factor of 4.4 × across individual locations in the watershed and a − 14.9 to + 20.4% range in potential SOC stock response to idealized disturbances, illustrating the need for additional measurements of soil carbon fractions and their turnover time to improve confidence in the MIMICS simulations of SOC dynamics.more » « less
-
Abstract Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon.more » « less
An official website of the United States government
